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SECTION I

INTRODUCTION

The guidance and control field has traditionally focused on continu-

ous or analog control systems represented in the Laplace or s-domain or

in a state-space model. Today, the increasing use and popularity of the

digital computer as a system component has provided the major impetus to

the theoretical as well as the practical interest in sampled-data or

discrete control systems. The basic problem facing the control engineer

is obtaining valid discrete models of complex, closed-loop hybrid

systems (i.e., systems containing both analog and discrete elements).

These discrete models must be in a convenient form that can be readily I
analyzed using the analysis and synthesis tools available today. Valid

discrete models for hybrid systems can be obtained using the z-, w-, or

w'-transform. The a-transform is a logical extension of the Laplace

transform and can be used to handle sampled-data systems. The w- and

w -transforms are related to the z-transform through simple bilinear

transformations. Discrete models expressed in the z-, w-, or w'-plane

dt~fine the coutnLuoos variables in a hybrid system at the sampling

instants and completely describe the inherently discrete variables asso-

ciated with digital elements.

The two computer programs presented in this volume provide some of

the basic divirnl implementation tools r.quired in th" e analysi and syn-

thesis of hybrid systems. The DISCRET computer program converts a

general analog or continuous model expressed in the s-plane to the z-,

w-, or w'-plane. DISCRET can calculate the standard, de ayed, or ad-

vanced discrete transform. Data holds including the zero order, first Iorder, second order, and slewer can be inserted into the transforma-

Jtion. The second program, TXCONV, implements the conversion of a high-

rate discrete transform to a low-rate discrete transform. The general

input/output structure of these two computer programs is shown in

Fig. 1. In DISCRET, the input is an s-plane transfer function and the
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Figure 1. General Structure of DISCRET and TXCONV
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output is a selected discrete transfer function. For TXCONV, the input

is a high-rate discrete transfer function and the output a low-rate dis-

crete transfer function in the z-, w-, w'-plane.

In Section II, a review of basic sampled-data theory is presented.

This section provides the necessary background information for succeed-

ing sections. The mathematical development is based on the assumption

that the sampling process can be described as the amplitude modulation

of an impulse train by the input signal. This assumption greatly sim-

plifies sampled-data theory and is valid for most practical engineering

applications.

The transform conversion expressions mechanized in the TXCONV compu-

ter program are developed in Section III. These expressions allow a

high-rate transform in the z-, w-, or w'-plane to be converted to a low-

rate discrete transform. The fundamental definition of the z-transform

and the discrete inversion integral developed in Section II form the

basis for the analytical development. The computer mechanization of the

transform conversion is based on the practical calculation of the

residues of a complex integral. The residues for this integral are

calculated in an unconventional manner using a limiting process via

L'11opital's rule. This method simplifies the mechanization scheme and

leads to a closed-form solution.

Sections IV and V provide a detailed description of the DISCRET and

TXCONV computer programs, respectivelyý This includes the available

program options, theoretical basis for the mechaniLation algorithms,

general and detailed program structure, required input data, and typical

program output. Source listings for these two computer programs are

contained in Volume III.

3



SECTION II

REVIEW OF FUNDAMENTAL SAMPLED-DATA THEORY

A. INTRODUCTION

A quick review of the fundamental principles of sampled-data theory

is presented in this section (Refs. 1-10). This background information

will be used in succeeding sections to develop the analytical expres-

sions mechanized in the DISCRET and TXCONV computer programs. The basic

theory for sampled-data or discrete systems tas developed over 20 years

ago and remains intact today. Practical sampled-data theory is based on

the assumption that t, actual sampling pperation can be modeled as the

amplitude modulation of an impulse train. This central concept greatly

simplifies the analysis and synthesis of sampled-data systems. For-

tunately, this view of the sampling process is valid for most practical

systems and use of this theory is normally considered exact;

Sampled-data systems generally contain both continuous and discrete

elements. The z-transtorm provides a unified analysis and synthesis

technique for these hybrid systems. For a sampled continuous element,

the z-transform can be considered as the Laplace transform of an impulse

sequence (impulse train) where the area or strength of the individual

impulses equal the value of the continuous time function at each dis-

crete sampling instant. An alternate viewpoint is to consider the

exponent in the z-n delay operator as an ordering variable for a number

sequence (or a sequence of discrete signal values) where the coefficient

for the z-n terms equals the value of the number sequence (or the dis-

crete signal) at the nth discrete time instance. This viewpoint allows

the time domain difference (or recursion) equation that describes the

number sequence (or sequence of disciete signal values) to be modeled in

the z-plane. In practice, the continuous functions in a hybrid system

are first expressed in the s-domain and then transformed to the z-plane

using standard techniques such as partial fraction expansion coupled

with table lookup or by employing the inversion integral and contour

4
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integration. (The partial fraction expansion table lookup approach is

mechanized in the DISCRET computer program.) On the other hand, a dis-

crete function (e.g., digital controller) may be first modeled with a

recursion equation and then directly converted to the z-plane by substi-

tuting the z-n delay operator for each discrete term in the recursion

equation. Naturally, during the design phase, it is the discrete

controller expressed in the z-plane that is first obtained and then con-

verted to a recursion equation using the z-n delay operator and subse-

quently implemented on a digital computer.

In analysis and design, no distinction is normally necessary between

the z-transform function derived from a sampled continuous el]ment and

the z--transform function that models a completely discrete element.

Once discretized, all elemencs of a hybrid system can be treated using

common analysis and design techniques and tools. However, consideration

must be given to the fact that discretizing a continuous function in the

z-domain only accounts for the continuous variables at the sampling

instance. In general, the inter-sample response is not modeled with the

standard z-transform. It is necessary to investigate the inter-sample

response using suoh techniques as the continuous frequency response and

T/N methods in Ref. 1 or the advanced (or delayed) z-transform. Never-

theloss, the ability to model continuous and discrete elements in a

common domain is one of the most fundamentally useful properties of the

z-transform (and tne w- or w'-transfoaum)-

B. FUNDAMENTAL SAMPLED-DATA RELATIONSHIPS

The fundamental relationships for the Laplace transform of a sampled

signal are:

CT(s) = c(kT) e-kTs (1)
k=O

5
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CT(s) J - C(P) - I (s-P dp (2)
2irj fCJO Cep

cT(s) - k (3)
Ti

The superscript T designates the time interval between each sampling

operation. These expressions are equivalent and each has found varying

degrees of utility in sampled-data or discrete system theory. All

assume that the sampling process can be visualized as the amplitude

modulation of an impulse train 6T(t) by the input signal (Fig. 2). The

impulse train (Eq. 4) represents a series of impulses of unit strength

or area equally spaced in time and extending from zero to plus infinity.

- K
ST(t) = 6(t) + 5(t - T) + 6(t - 2T) + .... J 6(t - kT) (4)

k=O

The Laplace transform of 6 T(t) is given in closed form as

rf6T(t)] = 1 + e-sT + e-2sT + . . e-ksT

k=O

_ e-sT ie-Th K 1 (5)

Equation 1 is the standard definition of the z-transform with the

simple change of variable

z esT (6)

where T is the sampling interval. Substituting Eq. 6 into Eq. 1 con-

verts CT s), a nonalgebraic function in s, to a rational function in z.

6
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This change of variable allows many of the well-defined analysis and

synthesis techniques developed for continuous systems to be applied wore

readily to sampled-data systems.

The relationship in Eq. 2 is obtained by exercising the method of

complex convolution. The dual relationships which are of fundamental

importance are stated below:

The Laplace transform of the convolution of two

time functions is equal to the product of their
individual transforms.

* The Laplace transform of the multiplication of
two time functions is equal to the convolution of
their transforms in the complex domain.

An analytical definition of the latter relationship is expressed as

I c+Jr
G(s) 2 GI(p) G2 (s - p) dp (7)

where

g(t) = g 1 (t) g 2 (t) oal < c < Re(s - a2) (8)

For convergence, the real part of s must be large enough so that all the

poles of G2 (s - p) in the p-plane lie to the right of the poles of

Gl(p). The abscissa of absolute convergence of GI(p) and G2(s - p) are,

respectively, Oaa and ta2. Applying Eq. 7 to the sampling process

LeprebentL eu by- L' mu-ýi.Ltp.L Cat.- I. L Ut t L-iiJUtOCý I.. LaJti. isj a Ui4. LUJUý

time function [ihe., cT(t) = c(t)6T(t)], and recalling that the Laplace

transform of 6T(t) is given by Eq. 5, results in Eq. 2.

There are many ways of deriving Eq. 3. Assuming C(s) has at least

two more poles than zeros, or the initial value of c(t) is zero [i.e.,

C(s) has a continuous impulse response], then the open interval of inte-

gration in Eq. 2 may be closed through an infinite semicircle in the

right half plane as shown in Fig. 3. The integral along the infinite

semicircle vanishes as a consequence of the assumption that the degree

of the denominator of C(s) is at least two higher than the numerator

8
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Figure 3. The Complex p-Plane

(Ref. 5). The closed contour integrati~on then reduces to the original

line integral in Eq. 2. Cauchy's integral formula then allows the

evaluation of Eq. 2 within the closed contour C2 as an infinite summa--

tion of residues which include all the poles of

1 :0 (9)
1 - e-T(s-P)

or

p = S - l k 0, ±1, ±2, ... (10)T

Equation 2 then reduces to

CT(G) E ý c(p)
k=-• dp [1 - e-T(sP-)] (11)

p p9s-(2uk/r)



The negative sign for the summation is a result of the clockwise contour

C2 . Evaluating the derivative in the denominator results in

d [1 - e-T(sp)] -TeJ 2 Trk -T (12)d-- e- l-)]p=s-(j21Tk/T)

Equation 11 then reduces to

CT(s) T 1

k=-Cs i

If C(s) has a denominator one degree higher than its numerator or

c(O+) # 0, Eq. 13 should be modified to include an additional initial

condition term (Ref. 59)-

CT(s C s - 4- c(0+) (14)
T k=-- T 2

Restricting C(s) to be of order i/sm, where m s 2 in Eq. 13 and in P I in

Eq. 14, insures that the infinite summation will be absolutely conver-

gent and independent ot the order ot summation. However, the restric-

tion on Eq. 13 can be relaxed to m > I if the sum is evaluated by taking

pairs of terms corresponding to equal positive and negative values of

the index k. Under this condition, the sum in Eq. 13 will then be abso-

lutely convergent (Ref. 11).

An alternate expression for CT(s) can be obtained from Eq. 2 by I
closing the contour to the left and evaluating the finite residues of

C(p). This contour avoids the problems of an infinite summation. For

this case, C(s) is required c-ly to have a denominator one degree higher

than its numerator, Under these conditions, Eq. 2 reduces to the fol-

lowing finite summation of residues corresponding to the poles of C(p)

in the p-plane.

1 0



S residues I--s-p) (15)
k 1 -cT(P) p=Poles of C(p)

C. z-TRANSFORM AND THE INVERSION INTEGRAL

The analytical derivation of a general conversion equation which

allows a low-rate discrete transform to be calculated from a high-rate

discrete transform (TXCONV computer program), relies on the fundamental

definition of the z-transform and application of the discrete inversion

integral. These two relationships are derived in some detail in this

subsection.

The definition of the z-transform stems from the infinite summation

cT(t) = • c(kfc) 6(t - kT) k = 0, 1, 2, ... (16)
k=0

where cT(t), the sampled signal, is represented by the area or strength

of impulses equal to the magnitude of c(t) at the sampling instants

t = kT. Viewing the sampling process as the amplitude modulation of an

impulse tcain 6T(t) by the signal c(t) at the sampling instants forms

the mathematical basis for practical sampled-data system analysis and

synthesis. Such a viewpoint is justified if the actual time during

which the sampler is closed is short compared to the time constants in I
the system under investigation. It is shown in Ref. 5 that for a system

with a single time constant T = I/a, the error using impulse modulation

is less than 5 percent for a sampler pulse width h which is less than or

equal to one-tenth of the time constant (i.e., h/t < 1/10). It is

significant to note that whether c(t) is sampled physically or ficti-

tiously, or already exists in pulsed form, cT(t) is still representative

of an equivalent linearized continuous signal c(t) at the sampling

instants t = kT. This point will be elaborated on in the next subsec-

tion. Taking the Laplace transform of Eq. 16 produces

II
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CT(s) = c(0) + c(T)e-sT + c(2T)e-2sT + c(kT)e-ksT (17)
k-0

In general, if the Laplace transform of c(t) is a rational algebraic

function, a closed form can be found for the infinite series represen-

tation of cT(s). The final simple change in variable z esT results in

the one-sided z-transform

CT(z) - 5 c(kT)z-k (18)
k=0

For the two-sided z-transform, the lower summation limit becomes rainus

infinity and c(t) is defined for negative time.

The inversion integral is a closed form technique for finding the

inverse z-transform (Eq. 19).

c(k_) 9 C zk-iCT(z) dz (19)

Equation 19 is based on the Laurent series expansion of F(z) = zk-IcT(z)

about z a 0. Expanding Eq. 18, the fundamental definition of the

z-transform, produces

CT(z) = c(0) + c(T)z- 1 + c(2T)z- 2 + -" + c(kT)z-k + "' (20)

If we now multiply Eq. 20 by z

FT(z) = zk-ICT(z) = c(0)zk-l + c(T)zk- 2 + .*" + c(kT)z- 1 + "'' (21)

The desired output c(kT) in the Laurent series expansion is defined as

the residue of the function FT(z). This result may be generalized

through application of the Cauchy theorem which states that if the inte-

gral FT(z) is defined by

12



FT (Z) - - zk dz
2n (22)

and the integral is taken around a closed contour CI which encluses the

origin of the z-plane, then FT(z) is given by

SFT(z) _, 0 , k < -1

FT(z) - , k - -1(23)

FT(z) -10, k>-

where the k -1 case is recognized as the residue of FT(z). Applying

this theorem term by term to Eq. 21 results in the discrete inversion

integral, Eq. 19. The desired discrete time inversion for c(kT) then

reduces to the practical evaluation of the residues of the poles asso-

ciated with [zk-icT(z)] expressed in closed form as

c(kT) = residues of [zk-ICT(z)] at poles of zk-ICT(z) (24)

I
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SECTION III

DEVELOPMENT OF TRANSFORM CONVERSION EXPRESSION

A. INTRODUCTION

The TXCONV computer program is mechanized to calculate a low-rate

discrete transform trom a given high-rate discrete transform. This sec-

tion analytically derives the transform conversion expressions used in

TXCONV. Detailed derivations are given in the z-, w-, and w'-planes.

The mechanization scheme in TXCONV is based on the practical calculation

of the residues associated with a unique form of the inversion integral

derived herein. The methodology presented in this section is exact for

integer ratios of high-to-low sampling rate and is based on an equiva-

lent linearized continuous response for nun-integer ratios.

B. TRANSFORM CONVERSION IN z-DOMAIN

The objective of the following mathematical development is to derive

a closed-form expression for the low-rate transform CT(z) as a function

of the high-rate transform CT/N (z ) represented by

CT(z) = CT/N(z p)]T (25)

This transformation inherently arises when the output of a system is

sampled at a lower rate than the input (Fig. 4). The superscript in

Eq. 25 designates the sampling interval in the z or zp transform. That

is,

CT(z) - z = esT (26)

CT/N(zp) - zp = esT/N (27)
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R T/N cT/1NcT
G - -T/N IN T

(phantom)

Figure 4. Fast-Input/Slow-Output Sampling
with Phantom T/N Output Sampler

The z -transform of the sampled signal CT/N(t) is first calculated with
p

respect to a sampling interval of T/N producing the high-rate transform

cT/N(zp). Then, the z-transform of this high-rate transform is taken

with respect to a T sampling interval producing the low-rate transform

CT(z). This constitutes the general form of the transform conversion

addressed in this subsection. To simplify the notation, the z and z

designation will he suppressed and CT and CT/N ,ill be used to designate

the z and z transforms.

We will assume that the sampling ratio N in Eq. 25 can be any inte-

ger or non-integer rational value. However, only integer values of N

are allowed in most practical sampled-data systems. More will be said

about this in the next subsections. For the present, we proceed with

the derivation for rational values of the sampling ratio and subse-

quently treat integer values as a special case of the more general non-

integer case.

The respective sampled signals in Eq. 25 are defined in the z-domain

using Eq. 18.

CT/N = E c(kT/N)zpk Zp = esT/N (28)
k=O

CT - c(kT)z-k , z = esT (29)
k=O

15
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Transforming Eq. 28 back into the time domain using the inversion inte-

gral (Eq. 19) results in

c(kT/N) CT/N zk-Idz (30)

2Zp dz

It is important to recognize that although Eq. 30 provides information

only at discrete instances of time separated by T/N seconds, a linear-

ized continuous time function c(t) can be obtained from the solution of

Eq. 30 by replacing kT/N with t. This linearized system response agrees

with the sampled response at the sampling instants t = kT/N. Moreover,

this linearized response also exactly characterizes the low-rate sampled

response c(kT) with t replaced by kT for integer values of N. It

approximates the low-rate sampled response c(kT) for non-integer values

of N by assuming that c(kT/N) is the high-rate sampled response of a

continuous system c(t). For exaraple, if C(s) contaiaz only simple pulet

at (a 1 , a 2 , a 3 , .. j), the general closed-form discrete time solution

from Eq. 30 is represented by

c(kT/N) = Ale-alkT/N + Azea2kT/N + A3 ea3kT/N + (31)

where (A-, , A A3 , ... ) represent the residues of the simple poles. If

kT/N is replaced by t in Eq. 31, the linearized continuous response is

obtained (Eq. 32) which exactly matches the sampled response c(kT/N) at

t kT/N.

c(t) A1 e-alt + A2e-a 2 t + A3e-a 3 t + (32)

It is readily apparent that sampled responses at other than the T/N

interval can be obtained from Eq. 30 via a change in the ordering

irdex k. For the T sampling interval, substituting k kN in Eq. 30

produces

16



c(kT) ..1cc T/N kN-1 (33)S21T J'Zp dp (3

Substituting Eq. 33 into Eq. 29 results in Eq. 34.

CT = Z kN-- I dz] Zk (34)

Interchanging the summation and integration in Eq. 34 produces Eq. 35.

CT _L. T/N [ N 1zz)k] P (35S2 1- -' F _z p ( 3 5 )
OI k0=00O

The infinite summation in Eq. 35 is recognized as a geometric progres-

sion in (zNzl-) which can be placed in closed form as indicated in
p

Eq. 36.

CT C I CT/N ! dzp (36)
95CZp 2•jJC i -z~z-I Z---I(36

Equation 36 is the final result which can be used to calculate any

general low-rate z-transform from a given high-rate z -transform. To
p

evaluate Eq. 36, the integration contour C1 in the zp-plane can be

selected to include all the poles of CT/N/zp and exclude the N poles of

SzNz-l). Alternatively, the contour C1 can include only the N poles of

zNzl) and exclude the poles associated with cT/N/zp. For either ap-
P p

proach, the problem reduces to calculating the residues of the enclosed

poles. The computationally more convenient method is to evaluate the

residues of cT/N/zp, Equation 36 then reduces to the finite summation
s a

given in Eq. 37.

17



CT - residue CT/N z
Z z- zN (37)

p z=-Poles of cT/N/zp

where

CT - CT(z) Low-rate transform, z = esT

CT/N - cT/N(zp) High-rate transform, Zp = esT/N

C. TRANSFORM CONVERSION IN w- AND w'-PLANE

The biliaear transformation from the z-plane to the w- aud w'-planes

are drtfincd by;

1 +w z-i1
Z 1= -w w z+ (38)

2/T + w" 2 zl
S2/T - w" w T z + 1

Since w' is related to w by a scale factor 2/T, the bilinear transforma-

tion can be expressed as

Z = A + w (40)

where w represents either w or w' and A = 1 for w and A = 2/T for w'.

Substituting Eq. 40 into Eqs. 28 and 29 produces

SIAp+wp-k + w k
CT/N - • c(kT/N) Wp -A Zp -1 (41)

cT
CT  = E c(kT) _]-k = A z(42)

k=O [A w] at

18



where A is associated with the low-rate transform and Ap with the high--

rate transform. Transforming Eq. 30 into the w- or w'-plane involves a

change in the integrtion variable given by

2ApA

dzp 2 (Ap Wp)2 dwp (43)

Substituting Eqs. 40 and 43 into Eq. 30 and simplifying produces

ck/) - (l CT!/N I~ A+ wp]k 2Ap dwp 44c(kT/N) 2j - wp] Ap - Wp Ap + WpC1

Changing the sampling index to k = kN in Eq. 44, substituting Eq. 44

into. Eq. 42, and interchanging the summation and integration results in

___k ___ 
__ dwp

cTC /N I (Ap + wp)N (A + wl 2A
2tij C1A- wp A - ~wz A -wp A -- wp

(45)

Placing the infinite summation in closed form reduces Eq. 45 to

1C c iN1 2 A p d w p
CT - 12N 1 I-TAp -A P dW (46)

where

p(p +w N P A + w)-11 W]

and

IXI < 1 (48)
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As was done in Eq. 36, a closed contour C1 is taken which includes all

the poles of the integrand in Eq. 46 except the poles associated with

the infinite summation term 1/1 - X. The free 1/Ap - wp term must also

be excluded since it is in the same contour region as the 1/1 - X term.

Ic is reqvired that the infinite sum in Eq. 45 be absolutely convergent

(i.e., satisfy Eq. 48) over the region of integration. For then, the

integral remains finite and the summation of integrals in Eq. 45 equals

the integral of the summation. This condition assures a closed form

solution for Eq. 46. The integral then reduces to a summation of resi-

dues given by:

S esdus CT/N I 2A~
l+ -residues A X Ap - Wp wp=Po]es of CT!N/(Ap+Wp)

(49)
whe re

Wp = High-rate transform variable

w = Low-rate transform variable

ww', Wp = W, for A = 2N/T and A 2/T

w -w, Wp =MWp for A = I and A =

D. GENERAL MULTI-RATE CONFIGURATIONS

In the preceding derivation leading to Eq. 36 (and Eq. 49) it was

shown tiu;.L h-le h.Lgh to low-rate ,ampling rati N 1, can be any ra t-iol o

value. There are three general multi-rate cases of particular interest

in sampled-data systems:

9 If N is an integer, the result obtained from
Eqs. 36 or 49 are exact for all multi-rate con-
tigurations. This is easily seen since the exact
discrete low-rate information c(kT) can be selec-
tively extracted from the original high-rate dis-
crete signal c(kT/N). Therefore, no use is made
of the linearized continuous response function.
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"0 For non-integer values of N, the results from

Eqs. 36 or 49 are exact if the original high-rate
discrete response c(kT/N) is the sampled response
from a completely continuous linear function c(t)
or C(s).

"* If N is a non-integer and c(kT/N) is the response
from a high-rate discrete function (e.g., digital
computer algorithm), the results from Eqs. 36 or
49 are at best approximate since the low-rate
response c(kT) is based on a linearized continu-
ous model of the original discrete function.

The most practical multi-rate configurations are those which can be

analyzed wiCh integer values of N. The high-rate transform .IN can

originate from a completely continuous function, a completely discrete

function, or any combination of continuous and discrete functions, and

Eqs. 36 or 49 provide the exact low-rate discrete transform for integer

ratios of sampling rate.

Consider the fundamental fast-input/slow-output multI-rate samplik

configuration in Fig. 5 where M represents the transfer function of a

data hold and G a continuous system in the s-plane. In general, the

output sampling interval. T2 is greater than the input sampling interval

TI; however, a direct integer ratio between output-to-input sampling is

not necessarily implied. This simple multi-rate configuration repre-

sents a complex (but practical) situation which can be analyzed using a

common sampling period T such that

ST T
-T 1 = T2 M,N = integer (50)

For example, if the input is sampled at 20 cps and the output at

13.33 cps; T 1 = 0.050, T2 = 0.075, and a choice of T - 0.150 produces

T i T
STT 2  T20.150 (51)

The multi-rate configuration in Fig. 5 then reduces to the general form

in Fig. 6. The output equation fot rig. 6 is given by
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RT CT2

Figure 5. Fundamental Fast-Input/Slow-Output
Multi-Rate Sampling, T2 > T1

T/M L L T/N

Figure 6. Fast-Input/Slow-Output Sampling
with Common Sampling Period T

CT/N = [ GMRT/M]T/N (52)

Computationally, Eq. 52 is more involved than a general slow-input/fast-

output system, since the T/N operator does not "operate through" the

no-nee naiooeat.-oou-r a to, L 1/INawpLt

interval is greater than the inner sampling interval T/M. Moreover, T/N

is not necessarily an integer multiple of T/M, which further complicates

the analysis. Fortunately, we are free to add a mathematical or phantom

sampler to the output (Fig. 7) which operates at an integer multiple of

the output sampling rate or at a submultiple of the output sampling

interval T/N. This mathematical convenience is valid since the actual

output sampler T/N simply rejects all the unwanted samples from the

phantom sampler T . This simplification overcomes the above complica-

tioas and facilitates a solution to Eq. 52 using the high-rate to low-
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T/M m C CT* CT/N

T/M L...MO1....J T, T/N

Figure 7. Fast-Input/Slow-Output Sampling with

Phantom Sampler T

rate transform expression in Eqs. 36 or 49. With the additional sampler

T , the output equation from F4.g. 7 becomes

CT/N = [(GM)T* RT/M]T/N (53)

The problem is now reduced to fiudiur, the individual transforms (GM)T*

and RT/M (and their product) using a common definition for the transform

variable z, w, or w'. For the more general case of where M/N is not an

integer, a value for T must be selected such that T is both smaller

than and an integer submultiple of T/M and T/N. An obvious choice is

T = T/MN; however, the largest compatible value for T is composed of

the prime factors of the integer product MN. The smaller T is, the

higher the order of the numerator and denominator polynomials in the

RT/M term. This increase in order is the result of substituting the

higher rate transform variable (e.g., z esT*) associated with the

(GM)T* term into the lower rate RT/M term (zm = eT/M o form an over-

all high-rate discrete transform product. For example, if z esT/6

and zm = esT/ 3 , then the zm transform variable can be defined by

zm = z 2 and the (GM)T/ 6 RT/ 3 product can be formed using the common

transform variable z . Therefore, a T composed of the prime factors of
~4N rduce to * *T/MMN reduces to a minimum the resulting order of the R term. This in

turn may reduce the computations required to calculate the low-rate TiN

transform in Eq. 53 (using Eqs. 36 or 49) since the number of residues

in the (GM)T*RT/M product will be at 2 minimum. Using the prime nota-

tiou, the general sampling structure in Eq. 53 becomes

23
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CT/N = [(GM)T/MN* RT/M]T/N (54)

Inserting the previous numerical sampling values into Eq. 54 will

help summarize and clarify the general results.

CT/2 = [(GM)T/ 6 RT/31T/ 2  (55)

The selection of T = T/6 allows the formation of the inner transform

product (GM)T/6RT/* and at the same time provides an integer ratio of

outer-to-inner sampling periods. Equation 55 is now in a form that can

be easily solved by Eqs. 36 or 49.

A second fundamentally important system configuration is shown in

Fig. 8. Here, GT/N represents a discrete model of the digital computa-

tions in a computer (e.g., digital control laws). MN is a data hold

device that models the holding of information in a storage register

between sampling intervals. The actual computational time in the com-

puter is assumed negligible in this case and is nut considered. How-

ever, computational delays can be easily handled with appropriate delay

factors and the advanced z-, w-, or w'-transforms. Simple algebraic

signal flow tracing produces Eq. 56, the output equation for Fig. 8.

CT = tMnGT/NRkl:N1 (56)

R RT/N f j n c, 0T

T/N T/N T

Figure 8. Fast-Input/Slow-Output Sampling with
Discrete System Component
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The same situation persists here as in Eq. 52 and we are unable to

operate through with T. Adding a phantom sampler to the output allows

us to write

CT [MT/NCT/NRT/N]T (57)

The CT transform in the z-plane can now be easily obtained from Eq. 36

by evaluating the residues of the inner transform product with the

transform variable defined as z = esT/N.

25
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SECTION IV

DESCRIPTION OF DISCRET COMPUTER PROGRAM

A. INTRODUCTION

DISCRET is a versatile and relatively accurate digital computer pro-

gram that transforms a continuous s-plane transfer function into a valid

discrete transfer function in the s-, w-, or w'-plane. The program cal-

culates the discrete transformation for a system of the general form

depicted in Fig. 9.

Figure 9. General Form of Sampled System

M(s) in Fig. 9 represents the s-plane transfer function model of 3

data hold, G(s) the s-plane representation of a continuous system, and

e"' the time factor in the advanced or delayed discrete transtorm. For

the standard z-, w-, or w'-transform, AT = 0. The output equation for

Fig. 9 is

CT = [eATs G(s)M(s)]T RT (58)

The superscript T denotes the sampling period in the z-, w-, or w'-

transform (i.e., z = esT). The DISCRET program calculates the general

transform given by

26
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[eATs G(s)M(s)]T (59)

This general transform is present in most open-loop and closed-loop

sampled-data or discrete systems.

DISCRET is written in FORTRAN for the Control Data Corporation (CDC)

CYBER 175 series computer. It can handle pole multiplicity up to three

and system order up to 50th. Double precision arithmetic is used

throughout the program.

B. PROGRAM OPTIONS

DISCRET calculates the practical discrete transformations required

to analyze and design realistic sampled-data systems, The program can

execute any combination of the following options:

"* Transform Options

- z-transform

- w-transform

- w'transform

"* Data Hold Options

- None

- Zero order hold

-- •L -- U --- L..1

- Second order hold

- Slewer

"* Time Increment Option

- Standard transform

- Delayed transform

- Advdnced transform

27
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C. MATHEMATICAL DESCRIPTION OF PROGRAM

The computer code in DISCRET is based on the computer program in

Ref. 12. Extensions and modifications have been made to accommodate

additional options. The analytical basis for the computer algorithms is

discussed in Ref. 12. However, to provide a complete description of the

program, some of the details are repeated.

Consider the partial fraction expansion of the general expression in

Eq. 59.

[eATISG(s)M(s)] T  =FT(z) eATs j-L-- - (s 1 +2 K22
(s + a2) + (s + a 2 ) 2

T

+ K31 + K32 --- K33 +
(s + a 3 ) (s + a 3 )Z (s + a 3 ) 3  J

(60)

SFT(z) in Eq. 60 is a z-plane term determined by the data hold se-

lected. For example, for a zero order hold (ZOH), Eq. 59 becomes

I s . I- sJ

where the ZOH introduces a pole at s = 0 and a z-plane factor z - 1/z.

For other data holds, a similar situation exists. This can be readily

verified by applying the data hold transfer functions in Table 1 to

Eq. 59.

28
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TABLE 1. DATA HOLDS 1MPLEMENTED IN DISCRET

DATA HOLD TRANSFER FUNCTION

Zero-Order M - e-sT

Hold 's

First-Order MI M(. + )Hold M0 T)Ms

Second-Order M2  M (s2 +- s +
Hold0 2T 2

2
Slewer M2
Hold Mslew T

In DISCRET, the individual partial fraction expansion terms in

Eq. 60 are first transformed into the w-plane using the following

advanced w-transforms:

A~ T e-aAT 1+ W (62)

Is--a] - 1 + e-aT w + (- e-aT/1 + e-aT)

eATs IT ATe-aAT 1 + w
(s + a) 2  1 + e-aT w + (1 - eaT/l + e-aT

aTea-aaT (1 + w)(1 - w) (

+ "(63)
+ e-aT) 2  -[w + - eaT/l + e-aT)1 2
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e (AT)2e I +w

(e + a) 3  2(1 + e-aT) w + ( e-aT/1 + e-aT)

T2 (1 + 2A)e-aTe-aAT (0 + W)(1 -. w) -:

2(1 + e-aTj 2  [w + (I - e-aT/l + e-aT

+ T2 e-2aTe-a&T (I + w)(1 w)2_ (64)
(I + e-aT] 3  [w+ 1 - e-aT/I + eaT)] 3 3

In Eqs. 62-64,

T - Sampling interval (see)

AT = Time advance (sec), 0 < AT < T, 0 < a < 1

The w-plane is related to the z-plane by the bilinear transformation

in Eq. 65.

z-1 i+w

W = z + w z f esT (65)z + 1 w

The corresponding z-plane transforms for the partial fraction expansion

terms in Eq. 60 are shown in Eqs. 66-68 (Ref. 2).

[et'Ts i e "-z (66)
si-+] z - e-aT

eATs T ATe-aATz + TeaTeaATz (67)

(s + a) 2  z - e-aT (z - e-aT) 2

L eATs 1T (AT) 2e-aATz T2 (1 + 2A)e-aTe-aATz + T2e 2aTe-aATz
(s + a) 3  2(z - e-aT) 2(z - eaT) 2  (z - e-aT) 3  (68)
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The s-plane expressions in Eqs. 62-64 and 66-68 represent Laplace

transforms of functions advanced in time. For example, eATS/(s + a) is

the Laplace transform of the continuous time function e-at advanced by

AT s2conds. That is,

e-a(t+AT) , 0 Q (t+AT) < (t-T) (69)

Sampling the advanced time function in Eq. 69 with period T and taking

the z-transform results in the advanced z-transform

e-aATz (70)

z - e-aT

and the advanced w-transform

e-aAT I I w + 1 (71)

S+ e-aT +(I - e-aT/i + e-aT) (

Numerical calculations in DISCRET are carried out in the w-plane to

improve the accuracy of the cross-multiplications necessary to form the

numerator of the discrete transfer function. The discrete numerator is

formed by multiplying each partial fraction expansion numerator by all

denominator terms except its own and then summing the resultant prod-

ucts. In general, the poles of the z-transfer function tend to migrate
towards the unit circle in the z-plane (i.e., z - 1). Computationally,
severe loss of accuracy can result from the summation of individual par- I
tial fraction expansion terms in the z-plane. This inherent inaccuracy

can be minimized by performing all possible calculations in the w- or

w'-plane where the poles are more reasonably separated. Therefore, the

w-plane Eqs. 62-64 are implemented in the computer code. It then

becomes a simple task to calculate the corresponding z- and w'-trans-

forms using the bilinear transformations in Eq. 72.

zwW z+ ' W W (72)
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The s-plane partial fraction expansion terms in Eq. 60 are obtained

in the subroutine PARTFR. These are passed to the subroutine WPLN which

calculates the w-piane transforms via Eqs. 62-64. The time factor term

eATs represents a time advance of less than one sampling interval T

(i.e., 0 < AT < T). For time delays, an additional delay factor

z-1 ý I - w/1 + w is added to Eqs. 62-64 and AT is defined by

AT = I - (D/T)

T = Sampling interval (sec)

D = Delay (sec

In this manner, the program can calculate either the advanced or delayed

discrete transform. The user inputs a positive time advance (AT), a

negative time delay (D), or zero for the time increment. From this

information alone, the program calculates the advanced, delayed, or

standard discrete transform.

The computer code automatically inserts a user-selected data hold

(Table 1) into the implementation scheme. The appropriate s-plane zeros

and poles associated with each data hold is inserted into the s-plane

continuous system C(s) (Eq. 60) by the main program module ADVANZ. The

z-plane term FT(z) in Eq. 60 is added to the transformation by the sub-

routine WPLN.

D. PROGRAI STRUCTURE

The basic structure of DISCRET consists of the ADVANZ main program

and two primary subroutines PARTFR and WPLN. These three program

modules along with their supporting subroutines are souwn in Fig. 10.

The main program ADVANZ first calls PARTFR to obtain the partial frac-

tion expansion terms in the s-plane and then calls WPLN to execute the

conversion to the z-, w-, or w'-plane. No external libraries are used

with the exception of the normal system routines that support FORTRAN.

Parameters are passed between the main program and the two primary
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subroutines entirely in a COMMON data structure. This lack of formal

parameter passing via subroutine arguments was initiated to allow the

program to be easily converted to an overlay structure in the TOTAL

(Ref. 13) computer program at AFWAL/FIGC. This permits interactive

operation of DISCRET as an option in TOTAL. The overlay version at

AFFDL transfers the main program functions to the TOTAL main overlay.

The main program ADVANZ is then treated as a primary overlay with sub-

routines PARTFR and WPLN converted to secondary overlays.

The source listing for DISCRET in Volume III is set up in a standard

program-subroutine structure (i.e., a main program followed by its sub-

routines). This listing also includes (in the comment code) the re-

quired changes to run the program in an overlay structure. Dividing the

program into overlays reduces the amount of computer memory required to

execute the program. The overlay code is highlighted with a star (*)

character Is column one. Removing this code from comment will allow

overlay operation. To comaplete this turnover, the main program card for

ADVANZ and the subroutine cards for PARTFR and WPLN must be deleted, In

additiont the two call subroutine statements located in ADVANZ must also

be deleted.

DISCRET can be run in either a batch or interactive mode. The

source code in Volume III is set up for batch operation. The prorpting

code to run the program in an interactive mode is also included in the

comment section of the main program ADVANZ. This code can be identified
by th..characters ....... in the first four columns.

E. DESCRIPTION OF SUBROUTINES

This substction presents a brief description of the routines used in

DISCRET. The general program structure contains a main program ADVANZ,

two primary subroutines PARTFR and WPLN, and 16 supporting subrou-

tines. These routines are all coded in FORTRAN.
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I. Program ADVANZ

a. Purpose

This Is the main program for DISCRET. It reads the input from data

cards and transfers it to internal variables and arrays that are located

in a common data structure. The program adds appropriate poles and

zeros to the input s-plane transfer function according to the data hold

selected. It calls PARTFR to calculate the partial fraction expansion

terms and then calls WPLN to execute the discrete transformations to the

z-, w-, or w'-plane.

b. Input/Output

All data are read from data cards and transferred to PARTFR and WPLN

via labeled common.

2. Subroutine PARTFR

a. Purpose

This routine takes the plant description in terms of poles and zeros

and outputs the partial fraction expansion coefficients corresponding to

each pole. The program drops identical poles and zeros and then calcu-

lates the polynomials needed for evaluating tha partial fraction expan-

sion terms.

b. Input/Output

All inputs and outputs for this subroutine are handled entirely by

common statements.

3. Subroutine WPLN

a. Purpose

This subroutine takes the partial fraction expansion coefficients

and the corresponding poles and calculates the w-plane transformation.

After determining the w-plane numerator and denominator for each partial
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fraction expansion term, the cross product is formed. Each numerator Ls

multiplied by all denominators except its own. The resultant polynomi-

als in w are then summed by adding coefficients for each power of w.

The subroutine then calls a root solver to find the zeros of the numera-

tor of the overall transfer function. The roots, poles and w-plane

polynomials may then be transformed to the z- or w'-plane.

b. Input/Output

All inputs and outputs for this subroutine are handled entirely by

common statements.

4. Subroutine CONVRT (A, NA, PN, NPN)

a. Purpose

The purpose of this routine is to change the format of an array with

real polynomial coefficients anid corresponding pUWers of s LtU al•iw a

place for the imaginary part of the coefficient.

b. Input

1) A: A double precision array with a two place
format such that each real coefficient of a poly-
nomial is immediately followed with its corre-
sponding power of s.

2). LinA. Number of occupied locations in array A.

c. Output

1) PN: A double precision array with a three place
format such that each real coefficient is fol-
lowed by a zero in the next location and the
corresponding power of s in the third location.

2) NPN: The number of occupied locations that are
used in PN(3*NA/2).
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5. Subroutine DIRIV (PN, NPN, PD, NPD)

a. Purpose

This routine takes the derivative of a transfer function with the

numerator polynomial located in PN and the denominator polynomial

located in PD. it then stores the numerator of the derivative in PN and

the denominator in PD. If

P 7 Aisn-i

i=0

then n-l
d (P) E (n - i)Aisn-i-I

i=O

and

PN = d (pN)ApD _ (PD)PN

PD = PD*PD

b. Input

1) PN: A double precision array containing the
numerator polynomial in the format: real part,
imaginary part, and the order of s stored in
back-to-back locations.

2) NPN: Number of occupied elements in array PN.

3) PD: A double precision array containing the
denominator polynomial in the same format as the
numerator polynomial.

4) NPD: Number of occupied elements in array PD.
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c. Output

I) PN: Numerator polynomial (in the same format as
the input) of the derivative function.

2) NPN: Number of occupied elements in PN.

3) PD: Denominator polynomial of the derivative
function.

4) NPD: Number of occupied elements in PD.

6. Subroutine MLTPL (C, N, Dz E, M)

a. Purpose

This routine multiplies the real polynomial coefficients by a scale

factor and stores the resultant polynomial In a new array.

b. Input

1) C. A Double precision array containing poly-
nomial coefficients and corresponding powers of
S.

2) N: Number of occupied elements in array C.

3) D: Scale factor which multiplies all odd loca-
tions of array C.

c. O•uput

I) E: a = .... " L....... array Aontalning a^atcu

polynomial coefficients.

2) M, Number of occupied elements in array E.

7. :ubroutine FORN (RD• NRD, MULT, NEGLCT, P2, NP2)

a. Purpose

Thc purpose of this routine is to form the denominator polynomial

that will be used to evaluate the partial fraction expansion coefficient

corresponding to a pole of the plant. The routine multiplies all of the
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poles together, excluding the pole (and its conjugate if the pole has an

imaginary part) for which the partial fraction expansion coefficient is

being sought.

b. Input

1) RD: A double precision array containing the
poles of the plant, real part then imaginary
part.

2) NRD:$: Two times the number of distinct poles
of the plant (number of locations used in array
RD).

3) MULT: Array contains multiplicity corresponding
to each pole contained in array RD (NRD/2 loca-tions).

4) NEGLCT: An integer array containing all zeros
except in the location corresponding to the pole
for which the partial fraction expansion coeffi-
cient is being determined, where a one appears.
If the pole is complex, a one also appears in
location corresponding to the conjugate of the
pole (NRD/2 locations).

c. Output

1) P2:$$$: A double precision array containing a
polynomial representing the product of all the
poles except the one for which the partial frac-
tion expansion coefficient is being sought (and
its conjugate if complex). The odd locations
contain the coefficients of the polynomial, and
the even locations contain the corresponding
power of si All coefficients are reai.

2) NP2:$B$: Number of occupied locations in the P2
Sarray.

8. Subroutine EVALU8 (P, NP, R, V, ZF)

a. Purpose

This routine evaluates a polynomial at the pole for which the par-

tial fraction expansion coefficient is being sought.
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b. Input

I) P: A double precision array containing the poly-
nomial coefficients in descending order with the
coefficient (real part, imaginary part) and power
of s stored in separate back-to-back locations.

2) NP: Number of occupied locations in array P.

3) R: A doible precision array containing the real
part of the pole co be evaluated in the first
location and the imaginary part in the next loca--
tion.

c. Output

1) V: A double precision array containing the value
of the polynomial after the pole of interest is
evaluated. The real part is in the first loca-
tion and the imaginary part in the second.

2) ZF: A scale factor that is used in the routine
to maintain numerical accuracy for large prod..-
ucts.

9. Subroutine ICJLTIP (CI, NTI, C2, NT2, C3, NT3, N)

a. Purpose

This routine multiplies two polynomials and then calls the subrou-

tine SIMPLE to combine the coefficiencs with like powers of s.

b. Input

1) N: An integer that specifies which format the
polynomials are in. A two corresponds to real.
coefficients with two locations necessary for
each polynomial term. A three correcponds to
real and imaginary coefficients with three loca-
tions necessary for each polynomial term.

2) Cl: A double precision array containing a poly-
nomial in the format specified by N.

3) NTl: Number of occupied elements in array Cl.

40
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4) C2: A double precision array containing a second
polynomial in the format specified by N.

5) NT2: Number of occupied elements in array C2.

c. Output

1) C3: A double precision array containing the
product of the polynomials Cl and C2 in the format
specified by N.

2) NT3:4$: Number of occupied elements in array C3.

10. Subroutine GETPOL (NR, NRN, A, NA)

a. Purpose

This routine takes a set of roots and multiplies them to form a

polynomial.

b. Input

1) RN: A double precision array containing the
roots to be multiplied together. The roots are
stored real part, then imaginary part. In loca-
tion RN(2*NRN+I), a scale factor is stored that
multiplies the polynomial.

2) NRN: Number of roots to be multiplied together.

b. Output

1) A: A double precision array with coefficients of
the polynomial times the scale factor in the odd

locations in descending order and corresponding
powers of s located in the even locations.

2) NA: Number of locations used in array A.

11. Subroutine ID (C1, NTI, C2, NT2, C3, NT3 M)

a. Purpose

The rouLine adds polynomials CI and C2 together and places the sum

in array C3. The polynomials are first placed sequentially in array C3
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and then the subroutine SIMPLE is called to add coefficients of like

powers of a. The dimension of array C3 must equal the combined dimen-

sions of C1 and C2. 
.

b. Input

1) M: An integer constant specifying, as in MULTIP,

which format the polynomial coefficients are in.

2) Cl: A double precision array containing poly-

nomial coefficients and corresponding powers of s

in the format specified by M.

3) NTI: Number of occupied elements in array CI.

4) C2: A double precision array containing a second

polynomial in the format specified by M.

5) NT2: Number of occupied elements in array C2.

c. Outputs

1) C3: A double precision array containing a poly-
nomial which is the sum of the polynomials C1 and

C2.

21 NT3: Nuiu1btr of occupied elements in array C3.

12. Subroutine SIMPLE (PF N, K)

a. Purpose

This routine combines the coefficients of a polynomial into the

least number of coefficients by adding together the coefficients with

like powers of s.
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b. Input

I) K: An integer constant specifying, as in MULTIP,
the format of the polynomial P.

2) P: A double precision array containing a poly-
nomial in the format specified by K.

3) N: Number of occupied elements in array P.

C. Output

1) P: Array containing least number of coefficients
necessary to specify the polynomial read in.

2) N: Number of occupied elements in the output
array P.

13. Subroutine ORDER3 (P, NP, K)

a. Purpose

This routine orders the polynomial coefficients into descending

powers of s.

b. Input

1) K: An integer constant specifying, as in MULTIP,
the format of the input polynomial P.

2) P: A double precision array containing the input
polynomial.

3) NP: Number of occupied locations in array P.

c. Output

1) P: Array containing the polynomial in descending
powers of s.

2) NP: Number of occupied locations in output
array P.

4
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14. Subroutine CDEXP (A, B, X, Y)

a. Purpose

This routine calculates the exponential functicn of a complex

number in double precision.

b. Input

1) A: Real part (double precision) of argument of
exponential function.

2) B: Imaginary part (double precision) of argument
of exponential function.

c. Output

1) X: Real part (double precision) of exponential
function.

2) Y: Imaginary part (double precision) of expo-
nential function.

15. Subroutine MULT (A, B, C, D, X, Y)

a. Purpose

This routine multiplies a double precision complex number by a

double precibion complex numbere

b. Input

I) A, B: Real and imaginary parts of the first
number.

2) C, D: Real and imaginary parts of second number.

c. Output

1) X: Real part of the complex product.

2) Y: Imaginary part of the complex product.
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16. Subroutine DIVI (A, B, C, D, X, Y)

a. Purpose

This routine divides a double precision complex number by a double

precision complex number.

b. Input

1) A, B: Real and imaginary parts of the first
number.

2) C, D; Real and imaginary parts of second number.

c. Output

1) X: Real part of the complex division.

2) Y: Imaginary part of the complex division.

17. Function Fact (0)

This is a function subroutine that calculates n!.

18. Subroutine POLYCO (A, B, RR, RI, N)

a. Purpose

The purpose of this routine is to form a polynomial from a set of

roots. Both real and imaginary coefficients are calculated.

b. Input

1) RR: Double precision array containing the real
part of each root.

2) RI: Double precision array containing the imag-
inary part of each root.

3) N: Number of input roots.

I.I
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c. Output

1) A: Double precision array containing the real
coefficients of the polynomial.

2) B: Double precision array containing the imagin- I
ary part of the polynomial coefficients.

19. Subroutine ROOTS (A, B, NN, RR, RI)

a. Purpose

This subroutine finds the roots of a polynomial with complex coef-

ficients.

b. Input

1) A: Double precision array containing the real
part of the polynomial coefficients in descending
powers.

2) Double precision array containing the imaginary 1
part of the polynomial coefficients in descending

powers.

3) NxN: Order of input polynomial.

c. Output

1) RR: Double precision array containing the real

part of each root.

2) RI: Double precision array containing the imag-

inary part of each root.

F. PROGRAM VARIABLES WITHIN LABELED COMMON

Two labeled COMMON blocks are used in the main program ADVANZ and

the two primary subroutines PARTFR and WPLN. Variables and arrays in

the main program and the two primary subroutines share the same storage

locations by means of the COMMON statement. These variables and arrays

are stored in the order in which they appear in the block specification.
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The COMMON blocks replace the subroutine arguments in PARTFR and WPLN.

This arrangement allows DISCRET to be easily converted to an overlay

structure. The variables and arrays located within these COMMON data

blocks are outlined below. Each variable and array is listed indivi-

dually with a brief description of its purpose.

1. COMMON/ADVCZ/RNRD,NRTNNRTD,MMVRVIBR,BI,T,NHAMAOTXFORMCPLR

Variable Purpose

RN A double precision array containing the zeros
of the continuous s-plane transfer function
G(s). The zeros are stored real part thea
imaginary part (required storage equals two
times number of zeros).

RD A double precision array containing the poles
of C(s) in the same format as the zeros.

NRTN Number of zeros in G(s).

NRTD Number of poles in G(s).

MM Integer array containing multiplicity of poles
corresponding to the partial fraction expansion
coefficients located iiL arrays VR and VI.

VR,VI Double precision arrays containing partial
fraction expansion coefficients (real and imag-
inary) for the poles of G(s) including those
poles introduced by the data hcld.

BRBI Double precision arrays containing correspond-
ing poles (reai and imaginary) for the VR and
VI arrays.

T Sampling time (sec).

NH Integer variables used in the data hold option.

AO Gain of the G(s) transfer function.

TXFORM Transform option variable - Z, W, or 'WT.

CPLR Data hold option variable - NON, ZOR, IST, 2ND,
or SLE.
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2. COMMON/TOTLI2/CLNPOLY(51),CLDPOLY(51),CLZERO(50,2),

CLPOLE(50,2),NCLZNCLP,CLKDCLNKICLDK

CLNPOLY Single precision array containing the numerator

polynomial coefficients for the discrete trans-

fer function G(z), G(w), or G(w'). The coeffi-

cients are stored sequentially back-to-back

with the highest order coefficient first in the

array.

CLDFOLY Single precision array containing the denomina-

tor polynomial coefficients for the discrete

transfer function in the same format as the

numeratol array.

CLZERO Single precision array containin~g the zeros ot I
the discrete transfer function. The real part

of the nth zero is stored in the first column

(n,l) and the imagiinary part in the second

(n,2).

CLPOLE Single precision array containing the poles of

the discrete transfer function in the same

format as tue zeros.

NCLZ Number of zeros in the discrete transfer func-

tion.

NCLP Number of poles in the discrete transfer func-

tion.

CLK Total gain for the discrete transfer function

(CIX - CLNK/CLDK).
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CLNK Numerator gain for the discrete transfer func-

tion.

CLDK Denominator gain for the discrete transfer

function.

G. PROGRAM OPERATING INSTRUCTIONS

The example in Fig. 11 will be used to illustrate the input and out-

put data structure for the DISCRET computer program. Input data items

are free-form (free-format) with separators rather than in fixed-size

fields. The two exceptions are the alphanumeric inputs which select the

desired data hold and discrete transform. The free-format input data

consist of a string of values separated by one or more blanks, or by a

comma or slash, either of which may be preceded or followed by any

number of blanks. A line boundary, such as an end of record or end of

card, also serves as a value separator (Ref. 14).

The input is divided into three main blocks of data. The first

block contains the basic parameters that define the s-plane system G(s)

to be transformed. These data are placed on the first data card in a

free format. The alphanumeric code for the data hold and type of dis-

crete transform are inserted on data cards two and three in an A3 and A2

format, respectively. The final block of data is again free format.

R RT cWcT
-L-1 G(s) AO eAT

T ZOH,iST,2ND,SLE (5+o0)(3+oI2)..

iT
I- ATs G(S)M(S)

Figure 11. Sampled Continuous System
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This input starts on card four and consists of the zeros and poles of

the continuous s-plane transfer function G(s). The required input data

are outlined in Table 2.

The arithmetic sign (i.e., positive or negative) of the time incre-

ment AT selects the advanced (positive AT) or delayed (negative AT) dis-

crete transform. For example, for a sampling period of T - 1.0 and a

time increment of 0.3, the advanced discrete transform is specified as

AT = 0.3 and the delayed discrete transform as AT -0.3. For the

standard discrete transform the time increment is AT = 0.0.

TABLE 2. INPUT DATA FOR DISCRET

VARIABLE PURPOSE

Data Card One - Free-Format

NRTN Number of zeros in G(s)

M Number of poles in G(s)

T Sampling time (sec)

AO G(s) gain

AM, (AT) Time increment option:
AT, -AT, or zero (sec)

Data Cards Two and Three - A3, A2 Format

CPLR Data hold option: NON,
ZOH, 1ST, 2ND, or SLE

TXFORM Transform option: Z, W,
or WP

Data Cards Four to nth - Free-Format

RN(2*NRTN) Zeros of G(s): real part
then imaginary part

RD(2*M) Poles of G(s): real part
then imaginary part
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The data hold and transform options are input in a coded alphanu-

meric format. These options with their respective alphanumeric codes

are given in Table 3. The alphanumeric input code for the data hold is

placed ii Columns 1-3 on data card two (left justified). The discrete

transform code appears on card three in Columns 1-2 (left justified).

TABLE 3. ALPHANUMERIC CODES FOR DISCRET

Data Hold Option Input Code

None NON

Zero order hold ZOH

First order hold 'ST

Second order hold 2ND

Slewer SLE

Transform Optinn Input Code

z transform Z

w transform W

w' transform WP

The order of the G(s) transfer function must be equal to or less

t�h�an th Pol . IiuiIcIty up to an indnurding three is permitted.

There is no restriction on the number of sets of repeated poles. The

zeros and poles of G(s) are input sequentially in a free-format (start-

ing on data card four) on as many data cards as is necessary. The real

and imaginary parts are separated with a valid separator (i.e., a comma,

a slash, or one or more blanks). The zeros are given first followed by

the poles. For real roots, 0.0 must be input for the imaginary part.

The output data from DISCRET can be divided into two main sections.

The first section deals with the input parameters for the s-plane

continuous system C(s) and those parameters that define the discrete
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tracoformatlon. The second section contains che results of the trans-

formation process - the discrete transfer function G(z), G(w), or

G(w'). The program first prints the transform options that have been

selected. This includes the sampling time, data hold, type oý discrete

transform, and the time increment. This is followed with a list of the

s-plane zeros and poles for G(s) including those introduced by tile data

hold. The partial fraction expansion coefficients for G(s) and its data

hold are printed next. The program then outputs the numerator and

denominator polynomials and the zeros and poles for the discrete

transfer function,

Table 4 contains nine sets of input data in card image format. The

sampled s-plane systems for these examples are depicted in Fig. 12. The

discrete transfer functions for each of these systems are given in

Eqs. 73-75.

CT - 5S i- e-sT]TS= (73)
RT l(s + 1 2j)(s + 1 + 2j) S

cT [ e' 0 0 4 s(s + .03)(s + 6.3)(s - 6) 1 e-sT]T

RT (s + 2)(s - 1.2)(s + 001 - .07j)(s + .01 + .07j) s

(74)

p•T r .-.004s(. 4- .nqO)( + 6.3)(s - 6) 1 -6sT) 2 I

RT [(s+ 2)(s- 1.2)(s +4.01 - .07j)(s + .01 + .07j) Ts2 J

(75)

These transfer functions are calculated by the DISCRET computer program.

The output for each data set in Table 4 is shown in Figs. 13-21.

The first three sets of data calculate the standard z-, w-, and w'-- dis-

crete transforms using a zero order hold and a sampling period of

ST - 0.] (i.e., TXFORM - Z, W, and WP; CPLR -i ZO; and AT - 0.0). The

output for these three examples is shown in Figs. 13-15. In data
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sets 4-6, the advanced z--, w-, and w'-tzansforms are calculated for the

second system given by Eq. 74. A ZOH is used with a sampling period of

T = 0.04 and a time advance of AT - 0.004 seconds. These advanced dis-

crete transfer functions appear in Figs. 16-18. The last three sets of

data use the same s-plane system G(s) with a slewer data hold and a time

delay of AT - -0.004 (Eq. 75). Figures 19-21 contain the delayed dis-

crete transforms for these inputs.
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SECTION V

DESCRIPTION OF TXCONV COMPUTER PROGRAM

A. INTRODUCTION

The TXCONV computer program calculaLes a low-rate discrete cransform

from a given high-rate discrete transform. The input to TXCONV is a

high-rate transfer function in the z-, w-, or w'-plane and the output a

low-race transfer function in the z-, w-, or w'-plane. The general

transform conversion is given by:

CT(z) - [CT/m(zp)]T (76)

CT(w) = [ICT/m(wp)]T (77)

CT(w') = [CT/m(w')]T (78)

The superscript designates the sampling interval used to form the dis-

crete transform. For example, the high-rate z p-transform CT/m(z ) is

first calculated with respect to a T/m sampling period. The low-rate

z-transform of this high-rate transform is then taken with respect to a

sampling interval of T seconds. The result is a low-"rate z-transform

CT(z).

The transforms in Eqs. 76-68 are generated when the output of a

system is sampled at a lower rate than the input (see Section III, Sub-

section D). An open-loop example of this situation is depicted in

Fig. 22. The output from the physical sampler T in Fig. 22 is expressed

as

[cT/m]T [GT/mRT/m] T  (79)
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T/M ~T/m l /

T [cT//i

(phantom)J

Figure 22. high-Rate input/Low-Rate Output Sampling

The T/m phantom (fictit.:ous) sampler in the output facilitates the for-

mation of the GT/mRT/m product using a common definition of the trans- h
form variable (e.g., zp -' esT/m). This mathematical convenience is

valid since the actual output sampler T simply rejects all unwanted

samples from the phantom sampler T/m. To evaluate Eq. 7 9, the procedure

is to obtain the high-rate T/m transform of RT/m and multiply it by the

high-rate T/m transform of GT/m. This high-rate discrete transfer func-

tion product is the required input to the TXCONV computer program. The

output from TXCONV is a low-rate discrete transfer function defined for

a T sampling period.

TXCONV is written in FORTRAN for the Control Data Corporation (CDC)

CYBER 175 series computer. The program can haodle pole multiplicity up

to three and system order up to 50th (the system order is variable and

can be 2asily changed). There is no restri.ctior on the number of sets

of repeated poles. Double precision arithmetic is used throughout the

program.

B. PROGRAM OPTIONS

TXCONV implements the conversion of a high-rate discrete transform

to a low-rate discrete transform. The program accepts the zeros and

poles of a high-rate discrete transfer function in the z-, w-, or

w'-plane and outputs a corresponding low-rate discrete transfer func-

tiou. The five available input options are described below.
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1. Z Option

The program input consists of the high-rate zeros and poles in the

z-plane and the low-rate (T) and high-rate (T/m) sampling periods.

Prior to executing the transform conversion, the high-rate z-plane

numerator and denominator polynomials are transformed to the w'-plane

using tile bilinear transformation zp = [(2m/T) + Wp]/[(2m/T) - w']. The

w'-p]ane denominator is then rooted to obtain the poles used in the

residue calculations. In this option, all calculations are carried out

in the w'-plane to minimize the numerical round-off errors. This is

necessary since the poles of a z-plane function tend to migrate towards

the unit circle (i.e., z " 1) as the sample rate is increased. This can

introduce numerical errors in the residue computation. These inherent

errors can be minimized by performing all possible calculations in the

w'-plane where the poles are more reasonably separated. The resulting

low-rate w'-plane transfer function is then transformed back into the

z-plane using the bilinear transformation w' = (2/T)(z - 1)/(z + 1).

The output for this optior. is a low-tate discrete transfer function in

the z-plane.

2. W Option

The program input is in the w-plane. All numerical calculations are

carried out in the w-plane. The output is a low-rate discrete transfer j

function in the w-plane,

3. WP Option

The program input is in the w'-plane. All numerical calculations

are carried out in the w'-plane. The output is a low-rate discrete

transfer function iri the w'-plane.

4. ZR Option

This option is the same as the Z option except that the w'-plane

high-rate poles used in the residue calculations are obtained by direct

transformation of the input z-plane poles. That is, the high-rate
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w'-plane denominator Is not rooted to obtain these poles as is done in

the Z option. The ZR option avoids the numerical errors that may occur

when rooting a polynomial.

5. ZT Option

The program input is in the z-plane. All numerical calculations are

carried out in the z-plane. The output is a low-rate discrete transfer

function in the z-plane. This option is limited to simple poles (i.e.,

pole multiplicity equal to one).

C. TRANSFORMATION EXPRESSIONS

The transformation expressions mechanized in the TXCONV computer

program are given below, These expressions transform a high--rate dis-

crete transfer function to a low-rate discrete transfer function. The

mathematical derivation for these discrete transformations is presented

in Section III.

1. w and w' Plane Transformations

c~t) - reidues cT/rný 1I Ip
k WpA 1 -Poles of cT/m(wP)/(Ap-wp) (80)

X' A PA + T11
A- - i+-•-- (81)

Alternate expressions are given by

(82)
2Ap (A + W) [N (W )D*t(wp) / +ym)_]

cT(w) - residues P- P[ -[ -

k wl-A[(1 Ym)/( 1 +ym)) wp-oles of CT/m(w )/(A,+Wp)

cT(w) - residues 2A. (A + P) ) +N(wp) (83)
k D*(w .)[(w + A) + (w - A)Ym] W Poles of CT/0(wp)/(Ap+w,)

80

I lI,-• ; 4••



where

CT(w) - N(w)/D(w) (84)

cT/m(w6p) - N(wp)/D(wp) (85)

and
D*(wp) D(wp)[(Ap + wp)(Ap - wp)] (86)

Y - (Ap + wp)/(Ap - wp) (87)

These transform expressions are applicable to either the w- or w'-plane.

For the w-plane, the transform variables are w and Wp vith A = A=l .

In the w'-piane, the transform variables become w' and Wp with A 2/T

arid Ap = 2m/T. In Eqs. 80-87 the following definitions apply:

m = Ratio of high-to-low sampling, (T)/(T/m)

w, w' = Low-rate transform variables

Wp, W; = High-rate transform variables?p

z- 2 z - 1esT
z-1 2 z-z+1 zT ze

Wp p= 2 ZpeT/m
p Zp + WP (T/m) zp + I p

2. z-Plane Transformations

cT/m(z z

cr~z) = rcsidues c/l~~
k-zP ZMpI (88)

po CT/m/)!
k zp z - Z~lzp=Poles of cTmz)/Zp ()
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Alternate expressions are given by; j

residue N(zp)
CT(z) = I
k (zD(zp) -zp =~Poles of CT/in(z )/Z.

(8 9

CT(Z) = residues z N~p/D(p

k p 1Z prPles of CT/ml(z~)z (9)

where
CT(z) N(z)/D(z) (91)

CT/m(z ) N(zp)/D(zp) (92)

D*(zp) = zpD(zp) (93)

and

m = Ratio of high-to-low sampling, (T)/(T/m)
z = Low-rate transform variable (z = esT

s/)
zp = High-rate transform variable (Z. = csT/m) i

D. GENERAL RESIDUE CALCULATION

Consider the general partial fraction expansion of a z-plane func-

tinn F(z½) fl'n a poe with multiplicity equal to n.

N An An -2
F(z) = = (z +a) z + a)n-I + (z + a)"-"2

An _ + " + Remaining poles of F(z)
(z + a)n-3
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The partial fraction expansion coefficients are given by t-he following

equations evaluated at z = -a:

(n) !N (95)An V( P()1 z _

z -a

[(n+) 1:/1!)N(,') AND()n+l11 (96)

(+I) D( ')n -- a

l(n+2)/2 ] () A ,D('n+ -(i 2)A ,- nlDl)

-2 (n+ 1) (n+2)D(')n (97)

[(n+3)!13!]N(')
3  -AnD( ) _ (n+3)A,_ID( ) _ (n+2)D(n-3)A _2D( )n+l

A n3 = (n+l) (n+2) (n+3)D ( n-a (9 8 )

In Eqs. 95-98, (.)n is defined as the nth derivative with respect to the

transform variable z. These equations are completely general and pro-

vide the partial fraction expansion coefficients for a pole with multi-

plicity up to and including n = 4. The coefficient for a pole with

multiplicity equal to n = I is given by:

Al N (99)
D =-a

For n = 2, the partial fraction expansion coefficients can We obtained

from

6N(')ID(2 - 2ND(') 3

3D " 2 D( ')2 z=-a

A2  = 2NI (101)
1(,)2 z---a
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And for n - 3,

Al " 120N 
2

(')2 D(,)3 
3 

- 12ND(')
3

D(')()
5  

- 60N(')ID(1)3D(1)4 + 15N(')1D( )4D( )4 (102)

40D(
3 
D( )

3 
D()

3  I-a
24N(') 1 D() 3 - 6ND() 4

A2  = (103)4D ( ' )3 D ( ) 3 = a

A3 = 6N (A3 )31 (104)

D( ' =-a

In Eqs. 95-104, the pole that is being evaluated (z + a)' is not

explicitly factored out of the denominator polynomial D prior to taking

the required derivatives or prior to the evaluation at z = -a. The
derivaLion of these equations follows the procedure presented in Ref. 1.

This method employs L'Hopital's rule to eliminate the indeterminate

forms that result (see Ref. 1, Appendix D for details). The general

procedure is to take consecutive derivatives of the numerator and denom-

inator polynomials until a determinate form is obtained. For example,

in the n 1 case, we have I

F(z) Nl " 4 Remaining poles of F(z) (105)D (z + a)

AT (z + a)N (106)

D z-a

If Eq. 106 is evaluated i z - -a without first explicitly factoring out

the (z + a) factor in the denominator and cancelling it with the numera-

tor factor (z + a), an indeterminate form (0/0) will result. Applying

L'Hopital's rule (i.e., taking separate derivativet; of the numerator and

denominator with respect Lo z) gives
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I
I

Aj (z + a)N' + N
DT

D z=-a
N "jz=- (107)

Notice that for any pole with a multiplicity of n 1, the evaluation of

the first derivative of the denominator produces a finite result. That

is,

D'i;=_a ý 0.0 (108)

This can be stated in more general terms for any pole with multiplicity

equal to n as

D kz=-a 0.0 , (z + aMn , k b n (109)

and

D()kI = 0.0 , (z + a)n , k C n (110)
I z=-a

where, again, (k is defined as the kth derivative of the denomina-

tor D.

For example, if

N ( + 2)(z + 3) Al BI

D(z) (z + 5)(z + 10) (z + 5) + (z + 10)

85

b J •



I

Then
D = z 2 + 15z + 50 

(112)

D' = 2z + 15 (113)

and

NI = z2 + 5z + 61 *-1.
Al ~z--z6 -13.2 (114)

D I Z-10 2z + 15 Iz=-io 4
BI N, z 2 + 5z + 6 1.2 (115)B D'- z=-5 2z - 15 z-5

The evaluation of the residues in the TXCONV computer program is

accomplished using Eqs. 99, 100, and 102. It is recognized that the

residue for a pole with multiplicity equal to n is given by the partial j

fraction expansion coetticient associated with the (L 4 a) term. Apply-

ing Eqs. 99, 100, and 102 to Eqs. 80 and 88 results in closed-forts sole-

tions which are functions of the separate derivatives of the numerator

and denominator polynomials for the given high-rate discrete transfer

function. The actual expressions mechanized in TXCONV are developed in

the next subsection.

E. MECHANIZATION SCHEME

The transformation expression in the z-plane is only mechanized for

poles with multiplicity eqilal to one (ZT option). This transformation

is coded in subroutine ZMULTI. As explained previously, for pole multi-

plicity greater than one (n > 1), the input high-rate z-plane transfer

function is first transformed to the w'-plaue prior to per-formning the

numerical calculations (Z and ZR options). This procedure improves the

accuracy of tbc results by reducing to a minimum the errors introduced

by numerical round-off. The z-platue convesion for option ZT is [ormed

by applying Eq. 99 to Eq. 88. The resul is Eq. 116 (see Subsections C

aid D for definition of terms).
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k ~ ~ N~P)/* zp =Pls D(CT(z) = residues z N(zp)/*(zp (116)

where

D*(Zp) = zpD(zp) (117)

m = (T)/(T/m) (118)

z = esT , Zp esT/m (119)

For all options except ZT (i.e., Z, W, WP, and ZR), separate mechan-

ization expressions are used for poles with multiplicity equal to one,

two, and three. These expressions are coded in the subroutines WUiJLTi,

WMULT2, and WMULT3 for n = 1, 2, and 3, respectively. Equations 99,

100, and 102 are individually applied to Eq. 80 to form these expres-

sions. The resulting transform conversion equations (Eqs. 120, 121, and

124) are applicable to either the w- or w'-plane. The definition of

terms for w or w' implementation is given in Subsections C and D. The

specific expressions that are mechanized are outlined below.

Multipli.icty n =

N N(w )/D* (w fI1/(I + Y
t
')] 10

c'(w) • residues 2At(A+W) w + POLE -

8P7ols of D(w )"A + ,
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Multiplici~ty of n 2

C T M - F-residues 2A p(A+ W) (Iw+ (NOLE) (121)

where kW+(OE2 Wp-Poleta of D(w p) (A p+iWp)

2(w)2N(w )D*.. (W) 2mN (w ) ymIl, 22
NI - -- p p p 12

D *,(W )(M + Y'M) 3 (O* "(w p))2(l + y.) D)*,(w P)(I + 'fin) 2

2f(w, )(POLE) 21j(w,)D (w)(POLE) 2mAN(w )Y' Y,
N2 - ----.---- +

D*0 p( ) (I + Y1n) 3(D"'"(W ))2(1 + yin) D*.,(W )(1 + Yin)2 (123)

Multiplicity of n 3

S(NI + N2)[w 2 + 2(POLE)w + (POLE) 2
]

+ (3+ N4) [w
2 + (POLE - A)w -A(POLE)1

CT(.)+ (N)[w2- (2A)w + A2Liireslduý:: 21 (A + (124)kp + (POLE) 3 (14
W p-Poles of

wber e

Ni - - 1.5N'(W )D~' (wy(2)
D (wj Cl + YM) (D""' (w ))2(I + yin)

37SN ~.3Nw )D*,,, '(

(0"'" (w )) (1 + yin) (JD*.. (w ))2(l + yin)(26
p P

3inN(w )YmnlYID*" ErnN'(w )vin-ly. 1.5min(w )YinyIY'L*...( )
N3 -- ~ ___p __ - 'p 2 (127)J

(D*.. (w ))2(1 + Yin)? D*.. (w ) (1 + yin)? 2 "( )( ~)
P p (Wp2(1+yI2

N4 - -3in(i - I)N(w p)yin-2(y t)2 3,rN(w )y'il4 Y' 1 8
N4 - D*,v (w ) (_, + yfil)? 2 (W ) ( + yll)? 18

N5 V (W + ---T--3 (129)
p
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For Eqs. 120-129, the following relationships and definitions apply:

POLE - A[(1 - Ym)/(l + Ym)] (130)

Y - (Ap + wp)/(Ap - wp) (130)

Y'= 2Ap/(Ap - Wp) 2  (132)

Y 4Ap/(Ap - Wp) 3  (133)

D*(W = D(wp)(Ap + wp)(Ap - Wp) (134)

m = (T)/(T/m) (135)

F. ROOT CONVERSION BETWEEN s, z, w, or w' PLANES

The conversion of the poles between the s-, z-, w-, or w'-plane is

mechanized in the subroutine SZWROOT. The algebraic relationshi,?s

implemented ir SZWROOT allow direct transformation of the poles from one

complex plane to another. Direct conversion of the zeros on a one-for-

one basis is not normally possible. One exception is the conversion

between the w- and w'-plane where both the zeros and poles transform

directly (w' = 2w/T). It is also possible to directly transfoLm the

zeros and poles from the w- or w'-plane to the z-plane. However, the

iLLV:S Of thLis •s" not L nULo aLUl true' LL(U i.e., :-plaade tU w- or w'- ae

direct conversion of zeros).

The complete conversion between any of the complex planes noted

above can be implemented by transforming the complex function instead of

its zeros and poles. Although, in so-me cases, physically unrealizable

functions may result. The general procedure is to transform the numnera-

tor and denominator polynomials (or partial fraction expansion terms)

and then factor the results to obtain the transformed zeros and poles.

This procedure is normally less desirable than direct conversion of the

zeros and poles, since the particular mathematiual calculations (e.g.,
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numerical factoring; multiplichtion and addition of polynomials) may

introduce additional numerical errors.

The subroutine SZWROOT is used in the TXCONV computer program to

transform the poles between the z- and w'-planes. The other conversions

available in SZWROOT are not utilized. Conversion of the poles between

the z- and w'-planes occur only in the ZR option. The algebraic conver-

sion relationships implemented in SZWROOT are outlined below. The

following definitions apply to the root conversion equations:

z = esT I + w (2/T).+w' (136)1 - w -- w(36

w z 1 = (T/2)w' (137)

2 z 2 I = (2/T)w (138)
T 2 z+l

s = Xs + JYS , z - Xz + jYz (139)

w = Xw + jYw w" = Xw' + JYw" (140)

3.-Plane to z-Plane

Xz = eXsT cos YsT (141)

Yz eXsT sin YsT (142)
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w-Plane to z-Plane

= 1 - (143)
z -(I- xWJ2 + y2

YZ 2Yw(144)

0 w) + y2

w'-Planie to z-Plane

1 - (T/2)Xw']2 -[(T/2)Yw']
2 (15

[I - (T/2)xwy] 2 + 1(T/2)Yw'1Z

=[I - (T/2)Xwj 2 + [(T/2nr,'12 (16

z-Pi~ane to s-Planie

-s 1.nX2 + y2 (147)

I tan- 1 (YJ/xA (148)
s T

w-P lane to s-Plane

=s In +X ) 2 + (149)2TY (I-Xw)2 + (y2'

_____I I3X y
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w'-Plane to s-Plane

[I + LYT/2)Xw',]2_ [ (T/2)Yw'12  (5]l)xs 1- In - (T/2)Xw']2 + [I(T/2)Yw,12

Ts 1a- I - [(T/2)Xý,7j 21 - (T/2)Yw']2  (1.52)

s-Plane to w.-Plane ________

e XsT _- CXST
ewXsT -T (153)

2 sin YT
w eX T + js +2csYT (154)

z-Piane to w Plane + (15

(X- + 1)2 i

- 2Y (156)
W (~+ 1)2 + y
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w'-Plane to w-Plane

xw T x, (157)

Twf (158)

s-Plane to w'-Plane

= 2 e Xs e-e (159)
T e XsT + e-sT + 2cos YST

2 2 sin YsT

e + eXS + 2 cos ,

z-Plane to w '-Plane

X2 2 zy2~(11

T(X + 1)2 + y2

2 ___ Y (162)
=T (X~ + 1) 2 + y

w-Plafle to w'Pln

xwl = 2(163)

Y,= 2 (164)
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G. PROGRAM STRUCTURE

The basic structure of the TXCONV computer program contains a main

program TXCONV and seven primary subroutines ZMULTI, WMULTI, WMULT2,

WMULT3, RESI, RES2, and RES3. The program modules along with the

20 supporting subroutines are depicted in Fig. 23. The main program

TXCONV first calls ZMULTI, WMULTI, WMULT2, and WMULT3 to evaluate the

individual residues of the high-rate poles. Subroutines RESI, RES2, and

RES3 are then called to combine these residues to form the low-rate dis-

crete transfer function. ZMULTI calculates the residues for poles with

multiplicity equal to one (n = 1). This subroutine mechanizes Eq. 116

in the z-plane. WMULTI, WMULT2, and WMULT3 calculate the residues for

poles with multiplicity equal to one, two, and three (n = 1, 2, 3), res-

pectively. These subroutines mechanize Eqs. 120, 121, and 124 in the w-

or w'-plane.

The TXCONV computer program can be operated in a standard program-

subroutine structure (i.e., a main program followed by its subroutine)

or in an overlay structure. The source listing for TXCONV in Volume III

is set up in a program-subroutine structure. However, this listing also

includes (in the comment code) the required changes to run the program

in an overlay structure. Dividing the program into overlays reduces the

amount of computer memory required to execute the ýprogram. The overlay

code is highlighted with a star (*) character in column one (which makes

the code inactive comment). Removing this code from comment will allow

overlay operation. To complete this turnover, the TXCONV program card

and subroutine cards for ZMULTI, WMULII, WMULT2, WMULT3, RESI, RES2, and

RES3 must be deleted. In addition, the call statements for these sub-

routines (which are now overlays) must also be deleted. These call

statements are located in the "Master Do Loop for Residues" section in

the main program. The overlay code creates a main overlay, a primary

overlay, and seven secondary overlays. This overlay structure is out-

lined below:
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Overlay Program Name

(TXCON-V,0,0,O) TXCONV

(27,0) MAIN

(27,1) ZMULTI

(27,2) WMULTI

(27,3) WMULT2

(27,4) WMULT3

(27,5) RESI

(27,6) RES2

(27,7) RES3

Parameters are passed between the main program and the seven primary

subroutines entirely in a common data structure. This lack of formal

parameter passing via subroutine arguments was initiated to allow the

program to be easily converted to an overlay structure in the TOTAL

(Ref. 13) computer program at AFWAL/FIGC. This permits interactive

operation of TXCONV as an option in TOTAL.

11. DESCRIPTION OF SUBROUTINES

This subsection contains a brief definition of the routines used in

the TXCONV computer program. A detailed description of each routine is

documented in the COMMENT section of the source code. Thi.s comment code

defines all subroutine arguments and the major internal variables in

each routine. In addition, descriptive comments are included throughout

each routine. The present source code (Volume III) is set up to handle

50th order systems. The comment code in the main program TXCONV lists

the required changes to the program DIMENSION statements to alter the

maximum system order allowed. The purpose of each variable and array in

labeled COMMON is also included in the source code for the main program.

Program TXCONV. This is the main program for the TXCONV computer

program. It reads the input from data cards and transfers the data to
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internal variables and arrays that are located in the COMMON data

structure. It adds appropriate denominator poles (z - 0, w- -1, or

w" = 2m/T) to the residue expressions. The call statements for the

seven primary subroutines (ZMULTI, WMULTI, WMULT2, WMULT3, RESI, RES2,

and RES3) are located in the main program. The final formation of the

output low-rate discrete transfer function is accomplished in this pro-

gram module. The individual low-rate discrete transfer functions from

subroutines RESI, RES2, and RES3 are combined to form the final output.

Subroutine ZMULTI. This subroutine calculates the residues for

poles with multiplicity equal to one (n - 1). ZMULTI mechanizes the

z-plane residue expression in Eq. 116.

Subroutine WMULT1. This subroutine calculates the residues for

poles with multiplicity equal to one (n = 1). WMULTI mechanizes the

w-plane/w'-plane residue expression in Eq. 120.

Subroutine WMULT2. This subroutine calculates the residues for

poles with multiplicity equal to two (n = 2). WMULT2 mechanizes the

w-piane/w'-plane residue expression in Eq. 121.

Subroutine WMULT3. This subroutine calculates the residues for

poles with multiplicity equal to three (n = 3). WMULT3 mechanizes the

w-plane/w'-plane residue expression in Eq. 124.

Subroutine RESI. This subroutine forms the overall low-rate dis-

crete transfer functioLL L01 Isi order poles. The n I 1 (multiplicity

equal one) residues that are calculated in subroutines ZMULT1 or WMULTI

are combined to form this transfer function.

Subroutine RES2. This subroutine forms the overall low-rate dis-

crete transfer function for 2nd order poles. The n = 2 (multiplicity

equal two) residues that are calculated in subroutine WMULT2 are com-

bined to form this transfer function.

Subroutine RES3. This subroutine forms the overall low-rate dis-

crete transfer function for 3rd order poles. The n 3 (multiplicity

equal three) residues that are calculated in subroutine WMULT3 are com-

bined to form this transfe" function.
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Subroutine COMPOLY. This subroutine forms a polynomial from a set

of roots. Both real and imaginary coefficients are calculated.

Subroutine BILIN. This subroutine performs the general bilinear

transformation from one complex plane to another.

Subroutine TERM. This subroutine calculates the individual terms

used in the bilinear transformation mechanized in subroutine BILIN.

Subroutine WZBILIN. This subroutine initiates the specific bilinear

transformation from the w'-plane to the z-plane. The actual transforma-

tion is carried out in subroutine BILIN.

Subroutine MULTIP. This subroutine multiplies two polynomials.

Subroutine ADD. This subroutine adds two polynomials.

Subroutine SIMPLE. This subroutine simplifies a polynomial by add-

ing coefficients of like powers.

Subroutine COEFF. This subroutine adds the missing power terms in a

polynomial by inserting a zero coefficient with the appropriate power

and moving the original terms to make room for the missing terms.

Subroutine ORDER3. This subroutine orders a polynomial in descend-

ing powers.

Subroutine ROOTS. This subroutine finds the roots of a polynomial

with complex coefficients.

Subroutine SZWROOT. This subroutine performs the root conversion

between the s-, z-, w-, and w'-complex planes.

Subroutine ORDPOLE. This subroutine checks for multiple poles and

stores the multiplicity in an array. The extra multiple poles are

deleted and only a single copy of each pole is stored in the output

array.

Subroutine POLE. This subroutine calculates a low-rate pole in the

z-plane trom a given high-rate pole in the z-plane.

Subroutine WPOLE. This subroutine calculates a low-rate pole in the

w- or w'-plane from a given high-rate pole in the w- or w'-plane.
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Subroutine DERIV3. This subroutine takes the derivative of a poly-

nomial.

Subroutine EVALU3. This subroutine evaluates a polynomial for a

given root.

Subroutine DIVI. This subroutines divides two complex numbers.

Subroutine MULT. This subroutine multiplies two complex numbers.

Subroutine DOLOOP. This subroutine implements a standard DO LOOP to

transfer one array into another array.

Subroutine CANROOT. This subroutine cancels equal zeros and poles

according to a specified tolerance. Separate tolerances are provided

for the real and imaginary parts of each root.

I. PROGRAM OPERATING INSTRUCTIONS

This subsection presents the input and output data structure for the

TXCONV computer program. Most input data are in free format with sepa-

rators rather than in fixed-size fields. The one exception is the

alphanumeric input which selects the transformation option (Z, W, WP,

ZR, or ZT). The free-format input data consist of a string of values

separated by one or more blanks, or by a comma or slash, either of which

may be preceded or followed by any number of blanks. A line boundary,

such as an end of record or end of card, also serves as a value

separator (Ref. 14).

The first section of input data contains the parameters that define

the high-rate discrete transfer function, the high-rate sampling period

(TIN), and the low-rate sampling period (TOUT). These data are placed

on the first two data cards in a free format. The alphanumeric code for

the transformation option is placed on data card three, in an A2 format.

(See Subsection B for an explanation of -he transformation options.)

The remaining data are again free format and consist of the zeros and

poles of the high-rate transfer function. The order of this transfer

function (i.e., order of the denominator polynomial) can be equal to or

less than 50 with pole multiplicity up to and including three. .,Ilk
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zeros and poles are input sequentially io a free format (starting on

data card four) on as many data cards as necessary. The real and imag-

inary prrts are separated with a valid separator (i.e., a comma, a

slash, or one or more blanks). The zeros are inserted first followed by

the poles. For real roots, 0.0 must be input for the imaginary part.

The required input data are outlined below:

Data Card Data Items Format

I GAIN, NZEROS, NPOLES Free format

2 TIN, TOUT Free format

3 Transformation option A2

4 Zeros(realimag) Free format

nth Poies(reai nag) Free format

The following definitions apply to the data items listed above:

GAIN - High-rate transfer function gain

NZEROS - Number of zeros

NPOLES - Number of poles

TIN - High-rate sampling period (sec)

TOUT - Low-rate sampling period (sec)

Transformation option - Z, W, We, ZR, or ZT

Zeros(real,imag) - Real and imaginary parts of

high-rate zeros

Poles(real,imag) - Real and imaginary parts of j
high-rate poles 3

The output data from TXCONV are divided into two main sections. The

first section contains a listing of the input variables associated with

the high-rate discrete transfer function. These variables include the

ratio of the sampling periods (RATIO); the high-rate (TIN) and low-rate
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(TOUT) sampling periods; the high-rate transfer function gain (GAIN);

and the number of input zeros (NZEROS) and poles (NPOTES). The program

also prints the numerator and denominator polynomials and roots for the

high-rate discrete transfer function. A listing of the high-rate poles

with their multiplicity is then printed. An additional high-rate pole

(required by the transformation process) at z - 0.0, w = 1.0, or

w' - 2/TIN is included in this listing (see Section III). The second

section of output data deals with the low-rate discrete transfer func-

tion. The numerator and denominator polynomials and their roots are

printed. The low-rate transfer function gain and a second listing of

the high-rate and low-rate sampling periods are also given.

The fast-input/slow-output sampled system in Fig. 24 will be used to

illustrate the input and output data structure for TXCONV. The proce-

dure for this example is typical for closed-loop systems employing fast-

input/slow-output sampling.

M G

E E T/2! I ,/2 T CY C T

T/2 S L S+ T

G2  M

Figure 24. FasL-Input/Slow-Output
Sampled System
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The output equation for Fig. 24 is given by

C - (GIM 2)ET/2 (165)

where

ET/2 . RT/ 2 - (G2 M)T/2(GM 2 ET/2) T  (166)

To solve for the ET/2 signal in Eq. 166, premultiply by GIM2 and take

the T transform of both sides of the resulting equation (or sample both

sides of the equation at a T interval). The result is

(GIM2 ET/2) T  - (GIM 2 RT/2) T 
- [(CIM2 )(G 2 M)T/2]T(GIM2 ET/2)T (167)

Rearranging Eq. 167,

(GIM2ET/m)T = I + [(GIM2 )(G 2M)T/21T- (GiM2 r/2)r (168)

and substituting Eq. 168 into Eq. 166 produces Eq. 169.

ET/2 f RT/ 2 
-(GmM)T/2 II + [(GIMm)(G2 (G 1 M2 RT/Z) T  (169)

Finally, substituting Eq. 169 into Eq. 165 gives the output equations /
for Fig. 24.

C - (GlM2 )RT/ 2 - (GIM2)T/2CG 2 M)T/2(1 + [IGIM2 )(G 2 M)T/2]Tf-' (GIM 2 RT/2) T

(170)
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To illustrate the operation of the TXCONV computer program, we cal--

culate the term

[(GIM2 )(G 2 M)T/2] T  (171)

Let z = esT/2, and introduce a phantom T/2 sampler to Eq. 171. This

mathematical operation is depicted in Fig. 25. This step is valid since

the T output sampler simply rejects all the unwanted samples from the

T/2 sampler. Equation 171 then becomes

}i
[(GIM2 )T/2(G 2 M)T/2] (172)

(phantom)

Figure 25. Phantom Sampler Concept

We next choose a low-rate sampling period of T - -ln(O.81). This gives
Sa set of convenient numbers when Eq. 172 is evaluated. Inserting the

transforms depicted in Fig. 24 into Eq. 172 produces

(GIM 2 )T/2 - e-T/2 = 1 - e-T/2 z + 1 (173)

z - eT72 ' (G2MT2 z-eT z

I
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and

[ )GIM2 JT/2(G 2 M)T/2]T - 1 - T/2 + s)/T

S(1~~ ~ ~~~ - e-T/2)2( +1 z __(75!

0[0a1(z + 1) (174)

Z -0.9)2 ]

Equation 174 can be solved by calculating the residues of the following

expression (see Eqs. 36 and 88).

f i e-TI2)2(z E + 1) z d (175)

2ZpZp - e-T/2) 2  (z - Zp) 2 p

The residues for the double poles at zp = 0.0 and zp eT/2 are:

Re (z P+ 1)z eT + 2e.-/

Zp-0.0 P LP - e-T/2)(zz 2 -2T (176)

zp-O.O

Res = d -- (z + _)z _ -(e-T + 2 e-T/2)z2 + (3e-2T + 4e-3T/2)z
Redzs 2 2z -2T (eT)2
Izpe¶/2 P zP) 17 Pz.)J T/2 e (7 -e (177)

Combining Eqs. 176 and 177 gives the low-rate discrete transfer function

in Eq. 178.
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0 e-T/2)2 ] + - e-T/2)2 Z + (e-T + 2e-T/2)1
- Res + Res z.eT] (1- eZ " e 2 T/)TI ~ zp O 0Z~ _T/21 (z - e-,T)2

O.01(z + 2.61)

(z - 0.81)2

Equation 174 is now solved using the TXCONV computer program. The

required input data are outlined below:
i

Data Card Data Items

i.1 .Gl1l,3

2 .1053605155,.210721031

3 ZR

4 -1.0,0.0,0.0,0.0

5 .9,0.0,.9,0.0

The output for this example is shown in Fig. 26. Both the high-rate and

low-rate z-plane transfer functions are printed.

A second example will consider the w'--plane high-rate to low-rate

transform conversion in Eq. 179.

hr[KG(w')T/3jT (179)

K =h .01274481960

T = .04 (sec)

T/3 = .12 (see)

The high-rate zeros and poles for the w'-plane transfer function

G(w')T/3 are given by;

105

I



Zeros (real,imag) Poles (realimag)

(-.9999481996 , 0.0 ) (-.5087865665 , .3042290447 )

(.001830897924, 0.0 ) (-.5087865665 , -. 3042290447)

(-.5657507592 , 6.861565379 ) (-.001726986844, 0.0 )

(-.5657507592 , -6.861565379) (-2.169528987 , 3.364297796 ) i
(-4.956749255 , 0.0 ) (-2.169528987 , -3.364297796)

(-9.892804162 0.0 ) (-12.82548298 0.0 )

(-14.00440188 , 0.0 ) (-16.86376037 , -12.01331830)

(-15.45466095 , 0.0 ) (-16.86376037 , 12.01331830 )

(50.000000000 0.0 ) (-10.52412126 , 0.0 )

A listing of the input data for this example is outlined below:

Data Cards

1 .01274481960,9,9

2 .04'.12

3 WP

4 Zeros (real,imag)

nth Poles (real,imag)

The output for this w'-plane example is shown in Fig. 27. Figure 27a

contains the high-rate w'-plane transfer function input and Fig. 27b the

low-rate w'-plane transfer function output.

The high-rate w" transfer function KG(w')T/ 3 was obtained from the

DISCRET computer program (Section IV) using the sampled continuous

system defined in Eq. 180.

K3(w')T/3 - [K 1 G1 (s)M 3 (s)]T/ 3  (180)
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In Eq. 180,

I - e-sT/3
M3 (s) = KI --. 6483736462

and the s-plane zeros and poles for GI(s) are given by:

Zeros (real,imag) Poles (real,imag)

(-1.000000000 , 0.0 ) (-.5087852889 , .3042567928 )

I (.001830897352, 0.0 ) (-.5087852889 , -. 3042567928)

(-5.000000000 , 0.0 ) (-.001726986844,0.0 )

i(-.5008733927 6.832938756 (-2.b1077353 3.365523190

(-.5008733927 , -6.832938756) (-2.161077353 , -3.365523190)

(-15.00087392 , 0.08) (-13.11843178 , 0.03)

(-15.00000000 0.0 ) (-16.'i{426112 -13.1394ziZ4)

(-10.000000000 , 0.0 ) (-16.40426112 , 13.13942724 )

(-10.68380409 , 0.0

These parameters were used with the WP option in DISCRET to obtain the

w'-plane transfer function KG(w,)T/ 3 .

1
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SECTION VI

SUMMARY

The high-speed timeshared digital computer with a large remory has

made it possible for the analyst and the computing machine to be coupled

closely together to solve a large variety of engineering problems. In

system analysis and design, one of the essential ingredients for this

coupling is a library of properly structured analysis and synthesis pro-

grams residing in the machine. Moreover, easily applied and accurate

computer programs that deal with discrete or hybrid systems are becoming

more essential as a result of the increasing use of digital controllers

in automatic control systems. Practical hybrid systems contain continu-

ous or analog elements (e.g., plant, process, or controlled element)

which can be described by or approximated with linear differential equa-

tions and discrete elements (e.g., digital controller) which are inher-

ently Jefined by difference equations. Thus, not only is the high-

speed, large memory digital computer used to analyze and design discrete

or hybrid systems, but the small-scale digital computer is becoming an

integral part of the control system itself.

The fundamental first step in the analysis or design of a hybrid

control system is to acquire or formulate a valid linear model of the

system being considered. This includes the discretization of the con-

tinuous elements in the system into a valid discrete domain. The

DISCRET computer program presented in this report provides this discre-

tization. DISCRET takes a continuous element expressed as an s-plane

transfer function and transforms it into the z-, w-, or w'-plane (see

Eq. 58). The resulting discrete transfer function is exact as opposed

to the approximate discrete transfer function obtained from a substitu-

tLion-for-s approach such as the Tustin or first-difference transforms.

The discrete transfer function generated by DISCRET defines the continu-

ous variables (associated with the continuous element) at each sampling

instant of the sampler device in the system. It is assumed that the
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sampler passes the continuous signal at discrete instance& equally

spaced in time. The time interval T between these samples is called the

sampling period. Once calcu]ated, this discrete model of the continuous

element can be readily combined with the inherent discrete elements in

the system (such as a digital controller) to provide a unified, concise

description of the total system. An inherently discrete element in a

hybrid system is first modeled with a recursion or difference equation

and then directly converted to the z-, w-, or w'-plane by substituting

the z-n delay operator for each discrete term in the difference equa-

tion. Therefore, all the elements in a hybrid system can be described

by transfer functions in the z-, w-, or w'-plane. Consequently, similar

frequency and time domain techniques used for continuous s-plane systems

can be applied by the control system engineer to a wide variety of prac- F
tical hybrid systems.

Many practical hybrid control systems are also multi-rate in nature.

That is, they contain samplers which operate at different sample rates.

This adds additional complexity to the analysis and design procedures,

but concise, definitive methods are available for handling multi-rate

systems (e.g., Refs. 1-3). However, a troublesome situation arises when

the output of a multi-rate system is sampled at a lower rate than its

input. This sampling configuration invariably leads to the requirement

of computing a low-rate discrete transform from a given high-rate dis-.

crete transform (see Eqs. 76-78). The TXCONV computer program presented

in this report calculates this complex transformation and makes it a

routine operation in the analysis and design process. Specifically,

TXCONV takes a high-rate discrete transfer function expressed in the z-,

w-, or w'-plane and transforms it into a desired low-rate discrete

transfer function in the z-, w-, or w'-plane. This relieves the analyst

from the computationally involved procedure of calculating the residues

of a complex integral.

Both the DISCRET and .TXCONV computer programs represent essential

tools for dealing with multi-rate, hybrid control systems. They provide

two of the primary techniques used to formulate a unified discrete model

of a complex, hybrid system. However, they are by no means the only
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tools or techniques required by the analyst. Other computational opera-

tions that are required include polynomial and transfer function manipu-

lation routines. These routines are needed to handle the individual

discrete transfer functions present in single-loop and multiloop hybrid

systems. Analysis routines that calculate root locus, frequency re-

sponse, and time response in the discrete domain for single-rate and

multi-rate, hybrid systems are also needed. Most of these routines for

single-rate discrete or hybrid systems are already available in the

TOTAL computer program (Ref. 13). Additional software routines that

specifically address multi-rate systems and the special features in-

volved in calculating the continuous frequency response of a discretely

excited system (Ref. 1) are presently under development at AFWAL/FIGC.

Both DISCRET and TXCONV have been integrated into the total computer

program. DISCRET and TXCONV are two of the over 100 options available

during the interactive execution of the TOTAL program. This interactive

feature allows a close coupling between the analyst and the computing

machine (digital computer) such that a real-time dialog between the two

can be effectively carried out. This results in a more effective and

efficient usage of the computing machine and improves the accuracy and

speed of the analysis and synthesis process.
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